

Application Programming Interface (API)

This document specifies the Iocast Application Programming Interface (API). Using this API, an application server or other
system may connect to an iocast network, communicate with nodes and groups, and perform system management
functions.

Document Number: 19-022
Iocast Version 3
Document Version: 3.2
Date: 02/07/2021
Author: James M Dabbs III

Critical Response Systems, Inc.
One West Court Square Suite 750
Decatur, GA 30030-2545
www.criticalresponse.com

Copyright © 2021, Critical Response Systems, Inc.
All Rights Reserved.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

1

Notice

While reasonable efforts have been made to assure the accuracy of this document, Critical Response Systems (CRS) assumes no liability
resulting from any inaccuracies or omissions in this document, or from use of the information obtained herein. The information in this
document has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies or
omissions. CRS reserves the right to make changes to any products and specifications described herein and reserves the right to revise
this document and to make changes from time to time in content hereof with no obligation to notify any person of revisions or changes.
CRS does not assume any liability arising out of the application or use of any product, software, or circuit described herein; neither does it
convey license under its patent rights or the rights of others.

Copyrights

This document and the CRS products described in this document may be, include, or describe copyrighted CRS material, such as computer
programs stored in semiconductor memories or other media. Laws in the United States and other countries preserve for CRS and its
licensors certain exclusive rights for copyrighted material, including the exclusive right to copy, reproduce in any form, distribute and
make derivative works of the copyrighted material. Accordingly, any copyrighted material of CRS and its licensors contained herein or in
the CRS products described in this document may not be copied, reproduced, distributed, merged or modified in any manner without the
express written permission of CRS. Furthermore, the purchase of CRS products shall not be deemed to grant either directly or by
implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of CRS, as arises by operation of law
in the sale of a product.

Patents

The material in this document is protected by multiple patents. Please see www.criticalresponse.com/patents for more information.
Patent pending.

Computer Software Copyrights

The CRS and 3rd party supplied software products described in this document may include copyrighted CRS and other 3rd party supplied
computer programs stored in semiconductor memories or other media. Laws in the US and other countries preserve for CRS and other 3rd
party supplied software certain exclusive rights for copyrighted computer programs, including the exclusive right to copy or reproduce in
any form the copyrighted computer program. Accordingly, any copyrighted CRS or other 3rd party supplied software contained in the CRS
products described in this instruction manual may not be copied (reverse engineered) or reproduced in any manner without the express
written permission of CRS or the 3rd party supplier. Furthermore, the purchase of CRS products shall not be deemed to grant either
directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of CRS or other 3rd
party supplied software, except for the normal non-exclusive, royalty free license to use that arises by operation of law in the sale of a
product.

License Agreements

The software described in this document is the property of CRS and its licensors. It is furnished by express license agreement only and
may be used only in accordance with the terms of such an agreement.

Copyrighted Materials

Software and documentation are copyrighted materials. Making unauthorized copies is prohibited by law. No part of the software or
documentation may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer
language, in any form or by any means, without prior written permission of CRS.

High Risk Materials

Components, units, or third-party products used in the product described herein are NOT fault-tolerant and are NOT designed,
manufactured, or intended for use as on-line control equipment in the following hazardous environments requiring fail-safe controls: the
operation of Nuclear Facilities, Aircraft Navigation or Aircraft Communication Systems, Air Traffic Control, Life Support, or Weapons
Systems (High Risk Activities). CRS and its supplier(s) specifically disclaim any expressed or implied warranty of fitness for such High Risk
Activities.

In some cases, CRS components may be promoted specifically to facilitate safety-related applications. With such components, CRS’s goal
is to help enable customers to design and create solutions that meet applicable functional safety standards and requirements.
Nonetheless, such components are subject to these terms.

Trademarks

Critical Response Systems and Iocast are trademarks of Critical Response Systems, Inc. All other product or service names are the property
of their respective owners.

http://www.criticalresponse.com/patents

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

2

Document History

Version Date Changes

3.0 01/01/2021 Streamlined and simplified, harmonized API with encompassing Iocast version 3.

3.1 01/04/2021 Editing and clean-up

3.2 02/07/2021 Clarified and detailed control stack description; removed packed attributes from
proto file references.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

3

1 Iocast Overiew

node controller node transceiver

NXNC
NXNC

nodes

NXNC

iocast
system

APIair interface
application servers

Service DBMS

Iocast is a wireless, wide-area network architecture that operates over narrowband radio channels. An iocast system
includes application servers, nodes, base transceivers, and a control stack, and it enables nodes and application servers to
exchange datagrams with each other. Nodes (low-power sensors, controllers, tracking devices, etc.) connect to an iocast
network using wireless node transceivers, while application servers connect using an API. An application server may send
datagrams to a single node, or to groups of nodes using multicast addresses. Nodes may respond to datagrams and initiate
their own datagrams.

The iocast air protocol divides RF channels into forward channels and reverse channels, and organizes them together into
geographical sectors. Fixed, high-power base transceivers transmit data to mobile node transceivers using forward
channels, while node transceivers transmit data to base transceivers using reverse channels. Reverse channels are time-
shared between node transceivers, while forward channels are “always on,” under control of base transceivers. Forward
and reverse channels are universally synchronized together using a GPS time base, with control stacks providing
coordination, timing, and RF access arbitration for the sectors they operate.

Iocast sectors may be as small as a building or campus, or as large as a state or region, and may include multiple channels
and base transceivers. Nodes make a secure connection to a specific sector before transmitting or receiving datagrams.
Nodes may be fixed or mobile, low-energy or high performance, and they may roam between interconnected systems.

1.1 Benefits

• Supports low-energy as well as high-performance nodes.

• Uses narrowband RF channels and a carrier-grade MAC layer.

• Includes bidirectional unicast and multicast datagrams.

• Supports node authentication, mobility, and secure roaming.

• Supports hundreds to billions of nodes per sector.

1.2 Components

1.2.1 System

A system includes a control stack and base transceivers (BXs). A system conceptually owns a set of nodes and sectors and is
identified by a unique 32-bit system ID (sysid).

1.2.1.1 Control Stack

A control stack is the “brain” of a network, the real-time software and database required to control sectors and support
application server clients. The stack includes two software components, the home controller and the sector controller. The
home controller is roughly analogous to a cellular network’s Home Location Register (HLR), while the sector controller is
roughly analogous to a Mobile Switching Center (MSC).

A control stack may operate as a single instance on a single server or container, or as a distributed system on a server
cluster or cloud platform. Furthermore, home controllers may have many-to-many relationships with sector controllers,
supporting node mobility between sectors as well as intersystem roaming.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

4

1.2.1.2 Base Transceiver (BX)

A base transceiver is a powerful, fixed radio that transmits data to node transceivers on forward channels and receives data
from nodes transceivers on reverse channels. Base transceivers connect to their control stacks using the Base Transceiver
Interface (BXI), and they are identified within a sector by their base transceiver ID (bxid).

1.2.2 Node

A node is a wireless object that connects to an iocast system. Nodes conceptually belong to one system and one application
server, although they may roam onto other systems. Generally, nodes include a node controller (NC) and a node transceiver
(NX), which are connected by the Node Transceiver Interface (NXI); however, these elements may be tightly coupled in
more integrated embodiments. In any case, nodes exchange datagrams with their system, and through their system with
their application server. Example nodes include weather sensors, water level sensors, intrusion alarms, utility meters, and
personal notification devices.

1.2.2.1 Node Transceiver (NX)

Node transceivers (NXs) are digital radio modems that connect to an iocast system. A node transceiver is globally, uniquely
identified by its 64-bit node transceiver ID (nxuid). Each node transceiver is bound to one iocast system, called its home
system, by a shared private key. Node transceivers may only exchange datagrams with their home system. While nodes
may roam onto other systems, these systems simply provide a secure tunnel between the roaming node and its home
system. Each node is configured with up to 16 multicast addresses, and it is assigned a unique node address when it
connects to a sector. Node transceivers operate with a node availability value (na), which describes how often the node
listens for forward datagrams. This value ranges from 0 to 15, with lower values supporting faster datagram delivery and
higher values supporting longer battery life. Node transceivers may be implemented as a physical module, or they may be
tightly integrated into a node at a hardware and software level. Node transceivers are configured over-the-air, securely, by
their home system.

1.2.2.2 Node Controller (NC)

Generally, node controllers (NCs) are the embedded intelligence, sensors, and hardware supporting the primary mission of
their node. A node controller might measure flow, note movement, or interact with a human user, in addition to
communicating with the node transceiver.

1.2.2.3 Node Transceiver Interface (NXI)

Node Controllers and Node Transceivers connect using the Node Transceiver Interface (NXI), a hardware and software
interface specification.

1.2.3 Application Server

Application servers are back-end systems which connect to a control stack using the API. Application servers are identified
by their 64-bit application ID (appid), which is unique per system. Application servers control a subset of the nodes on the
control stack, sending and receive datagrams to and from them to facilitate their application.

1.2.4 Group

Groups are sets of nodes sharing a common multicast address. A group is identified by its address, and it is conceptually
owned by one control stack with which it shares a private encryption key. A group is controlled by an application server,
which may transmit datagrams to the group and add/remove nodes to/from the group. Group member nodes receive, and
may reply to, datagrams sent to the group’s multicast address. Each group has a group availability value (ga), which
describes how often nodes in the group must listen for forward datagrams. Group addresses may be global, wherein
multicast datagrams follow nodes as they roam onto other systems, or they may be local and only meaningful on one
system.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

5

1.2.5 Channel

An iocast channel is a narrowband radio channel used to transmit datagrams and control information. Iocast channels
include forward channels (base to node) and reverse channels (node to base).

1.2.6 Sector

A sector is a geographical area of coverage, including one or more base transceivers and two or more channels, under
common control of one control stack. A node must connect to a sector before sending and receiving datagrams. Sectors are
identified by their Sector ID (secid), which is unique per system.

1.2.7 Datagram

Nodes and application servers communicate by exchanging datagrams. Application servers send forward datagrams to
single nodes (unicast) or to groups (multicast). Nodes send reverse datagrams to application servers. Nodes and application
servers know when their unicast datagrams are successfully delivered, and application servers know which recipients
successfully receive their multicast datagrams.

1.2.7.1 Requests and Responses

Optionally, datagrams are divided into request datagrams and response datagrams. Response datagrams allow airtime- and
energy-efficient support of low-level request/response protocols, with the main limitation being a relatively narrow
response window of the previous 24 datagrams.

Forward Request Datagram An unsolicited forward datagram sent from an application server to a node
or group, not in response to a reverse datagram. Forward request
datagrams may be unicast or multicast.

Forward Response Datagram A forward datagram sent from an application server to a node in response
to a reverse datagram. Forward response datagrams must be unicast and
may not be multicast.

Reverse Request Datagram An unsolicited reverse datagram sent from a node to an application
server, not in response to a forward datagram.

Reverse Response Datagram A reverse datagram sent from a node to an application server in response
to a forward datagram.

1.2.7.2 Encryption

Datagrams may be natively encrypted, using a shared a private key to provide bidirectional authentication and privacy
between a node or group and its control stack. Native encryption adds up to 32 bytes of overhead compared to
unencrypted (plain text) datagrams. Applications may use their own encryption schemes instead of or in addition to native
iocast encryption.

1.2.7.3 Timestamps

Via the air protocol, nodes have access to a millisecond-resolution timebase. Nodes can use this information to accurately
timestamp reverse datagrams as they are queued, efficiently notifying their protocol stack and application server when the
datagram was created and how long the transmission process took.

1.2.7.4 Short Datagrams

Normal datagrams range in size from 1 byte to 8,128 bytes; however, iocast also includes short datagrams, which are
optimized to carry small payloads of 12- to 48-bits. Short datagrams do not support native encryption but in other respects
behave identically to normal datagrams at the API and NXI level.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

6

1.2.7.5 Datagram Identifiers

At the system- and API-level, datagrams are identified by a set of system-wide unique 64-bit datagram IDs called the
forward datagram ID (forward_datagram_id) and the reverse datagram ID (reverse_datagram_id). At the node- and air-
protocol level, datagrams are identified by two sets of 5-bit sequence numbers, the forward datagram sequence number
(fdsn), and the reverse datagram sequence number (rdsn), respectively. The fdsn and rdsn values cycle from 0 through 31,
repeating, and uniquely identify the last 32 datagrams sent to or received from each address.

1.2.8 Number Coordination

Iocast include several numbered codes. Three codes, nxuid, sysid, and maddr, are coordinated globally. Other values are
coordinated per system, by system authorities.

Code Name Scope Width

Node transceiver unique identifier nxuid global 64

System identifier sysid global 32

Sector identifier secid per-system 16

Application identifier appid per-system 64

Base Transceiver Identifier bxid per-sector 16

Multicast address maddr global 32

Node address naddr per-sector 32

http://criticalresponse.com/

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

7

2 API Description

node controller node transceiver

NXNC
NXNC

nodes

NXNC

iocast
system

APIair interface
application servers

Service DBMS

ReadNodeList
ReadNode
UpdateNode
ReadGroupList
ReadGroup
ReadMembership
UpdateMembership

Nodes Groups

Send/Resend/Cancel

Receive

gRPC

GetSystemInfo

Follow

The Iocast API is based on gRPC (see iocast-api-v3.proto) and allows application servers (clients) to connect to control stacks
(servers). It includes 12 methods, and does not specify URL, port convention, or authentication; the iocast system operator
must provide this information to clients.

2.1 Clients

The API identifies each client (A control stack is the “brain” of a network, the real-time software and database required to
control sectors and support application server clients. The stack includes two software components, the home controller
and the sector controller. The home controller is roughly analogous to a cellular network’s Home Location Register (HLR),
while the sector controller is roughly analogous to a Mobile Switching Center (MSC).

A control stack may operate as a single instance on a single server or container, or as a distributed system on a server
cluster or cloud platform. Furthermore, home controllers may have many-to-many relationships with sector controllers,
supporting node mobility between sectors as well as intersystem roaming.

) by its 64-bit application ID (appid). This value is included in method calls as the appid field. In cases where colocation and
physical or perimeter security is available, the appid field itself can be used for lightweight, stand-alone authentication.

2.2 Nodes

The API identifies each node by its 64-bit nxuid value (1.2.2.1). In most cases this value is passed in the nxuid field. Clients
may read their nodes from the control stack database, exchange datagrams with their nodes, and make changes to their
nodes’ groups as well as their na, ne, and me values.

https://grpc.io/
http://iocast.io/documents/iocast-api-v3.proto
https://grpc.io/docs/guides/auth/

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

8

2.3 Groups

The API identifies each group by its 32-bit multicast address (maddr). Groups have a visibility setting, which determine
which clients may access them and how they may be used. Group visibility types include Private, Public, and External as
follows:

• Private
The client may send datagrams to the group and access the group with Management Methods. Other clients
cannot see or access the group.

• Public
The client may send datagrams to the group and access the group with Management Methods. Other clients may
access the group with Management Methods.

• External
The group belongs to another client that has set visibility to public. The client may access the group with
Management Methods, but not send datagrams to the group.

Clients may read their groups from the control stack database, send datagrams to their groups, and add their nodes to
group membership.

2.4 Datagrams

The main purpose of the iocast API is to allow clients to exchange datagrams with nodes and groups. Datagrams are
uniquely identified by a 64-bit ID, assigned by the server. Datagram ID values appear throughout the API in fields
forward_datagram_id and reverse_datagram_id for forward and reverse datagrams, respectively. Datagram ID values use
a different numbering space than the fdsn and rdsn datagram sequence numbers in the NXI specification and the air
protocol; however, the sequence numbers are made available to API clients through the Receive and Follow methods.

2.5 Datagram Payload
message DatagramPayload
{
 message Short
 {
 uint64 data = 1;
 uint32 bit_count = 2;
 }

 message Normal
 {
 bytes data = 1;
 bool encrypted = 2;
 }

 oneof data
 {
 Short short = 1;
 Normal normal = 2;
 }
}

Datagram payloads are described using the DatagramPayload message. It contains one of two possible data fields, either
short or normal. The short field contains a data word and a bit_count value, describing the payload as the least-significant
bit_count bits of data. The normal field contains a data field of payload bytes and an encrypted field, which describes
whether iocast encryption is to be used.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

9

2.6 Datagram Progress
enum ForwardDatagramProgress {
 QUEUED = 0;
 CANCELLED = 1;
 FDSN_ASSIGNED = 2;
 TRANSMITTING = 3;
 TRANSMITTED = 4;
 DELIVERED = 5;
 DELIVERY_TIMEOUT = 6;
 DELIVERY_ERROR = 7;
 RESENT = 8;
}

The system notifies the client as it processes forward datagrams, sending an event upon each of major state changes. These
event codes are enumerated as follows:

• QUEUED
The system has accepted the datagram into its queue.

• CANCELLED
The client has successfully cancelled the datagram.

• FDSN_ASSIGNED
The system has assigned a forward datagram ID to the datagram.

• TRANSMITTING
The system has started transmission of the datagram.

• TRANSMITTED
The system has finished transmission of the datagram.

• DELIVERED
The node has acknowledged successful receipt of the message.

• DELIVERY_TIMEOUT
The datagram was not delivered because of a timeout.

• DELIVERY_ERROR
The datagram was not delivered due to a fatal error.

• RESENT
The datagram has been resent.

2.7 Timestamps

Several API messages include a timestamp field, expressed as the number of milliseconds since midnight, January 1, 1970.
Depending on the specific use, this value may be expressed in UTC or GPS time.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

10

2.8 Capacity
message Capacity {
 message Quota {
 uint32 forward_queue_length = 1;
 uint32 forward_datagram_count = 2;
 uint32 forward_bit_count = 3;
 uint32 reverse_queue_length = 4;
 uint32 reverse_datagram_count = 5;
 uint32 reverse_bit_count = 6;
 }

 Quota max_quota = 1;
 Quota current_quota = 2;
 uint32 forward_datagram_max_bits = 3;
 uint32 reverse_datagram_max_bits = 4;
}

Iocast allows for optional per-group and per-node capacity, which describe how many datagrams and bytes per day may be
sent to and from a node or sent to a group. If capacity is used, a Capacity message type is included in several method
responses, describing the total and remaining available datagram and byte counts.

2.9 gRPC Status Codes

In gRPC implementations, each method call returns a status code (see, Error Handling) indicating top level success or failure
of the call. Several of these codes have specific meaning within the Iocast API, as follows:

gRPC Status Code Iocast API Meaning
GRPC_STATUS_OK The method completed successfully.
GRPC_STATUS_NOT_FOUND The node, group, or datagram does not exist.
GRPC_STATUS_INVALID_ARGUMENT A request message is invalid.
GRPC_STATUS_PERMISSION_DENIED The client may not send a datagram to an EXTERNAL group.
GRPC_STATUS_FAILED_PRECONDITION The client may not only resend a datagram previously sent to a group. The

client may not resend a datagram currently being sent.
GRPC_STATUS_ABORTED Optimistic locking failed because of a stale row_version.
GRPC_STATUS_RESOURCE_EXHAUSTED The group or node has exceeded its quota.
GRPC_STATUS_UNAVAILABLE The node or group is busy, or the datagram can no longer be cancelled, or

the datagram has fallen out of the response window.

https://www.grpc.io/docs/guides/error/

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

11

2.10 API Method Summary

The API includes 13 methods, roughly divided into communication methods, management methods, and one system
information method. Application that only send and receive datagrams may only require the communication methods,
while more complex systems may make use of management methods to dynamically configure and manage groups and
nodes.

2.10.1 Communication Methods

The API includes three communication methods, which enable the client to send datagrams to nodes and groups, and to
receive datagrams from nodes.

• Send

• Resend

• Cancel

• Receive

2.10.2 Management Methods

The API includes seven management methods. Six of these enable the client to read and update node rows, read group
rows, and update group membership. The sixth method (Follow) enables the client to synchronize its own database with
real-time database updates from the server.

• ReadNodeList

• ReadNode

• UpdateNode

• ReadGroupList

• ReadGroup

• ReadMembership

• UpdateMembership

• Follow

2.10.3 System Information Method

The API includes one additional method, which enables a client to determine its roles and the behavior of the channel.This
event signals that the event queue has been purged and that a discontinuity may appear in the event sequence numbers.
The value contains the number of events that were purged.

• GetSystemInfo

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

12

3 API Methods

3.1 Send
 rpc Send (SendRequest) returns (SendResponse) {}

The Send method sends a forward datagram to a node or group. The client passes a SendRequest message to the method,
and the method returns a SendResponse message to the client. After a successful Send method call, the client can use the
Receive method to track the datagram’s progress, or the Resend

 rpc Resend (ResendRequest) returns (ResendResponse) {}

The Resend method resends a forward datagram to a group. The client passes a ResendRequest message to the method,
and the method returns a ResendResponse message to the client. After a successful Resend method call, the client can use
Receive to track the datagram’s progress, or the Error! Not a valid bookmark self-reference. method to delete it from the
queue.

3.1.1 ResendRequest

message ResendRequest {
 uint64 appid = 1;
 uint64 forward_datagram_id = 2;
 repeated uint64 nxuid_list = 3;
}

The client passes a ResendRequest message when invoking the Resend method. The ResendRequest message includes the
following fields:

• appid
This field contains the client’s appid (2.1).

• forward_datagram_id
This field identifies the datagram to be resent, which must be a datagram previously sent to a group address.

• nxuid_list
This field identifies nodes which should be covered by the retransmission of the datagram. If this list is empty, then
the datagram is retransmitted in all sectors connected to member nodes. If this list contains entries, then the
datagram is only retransmitted in sectors connected to nodes in the list.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

13

3.1.2 ResendResponse

message ResendResponse {
 uint64 estimated_delivery_timestamp = 1;
 Capacity capacity = 2;
}

Upon successful completion, the Resend method responds with a ResendResponse message, which includes the following
fields:

• estimated_delivery_timestamp
This field specifies when the node is expected to receive the datagram, using the timestamp format described in
section 2.7.

• capacity
If present, this field describes the current capacity of the destination node or group after accounting for the
present datagram.

Cancel method to delete it from the queue.

3.1.3 SendRequest

message SendRequest {
 uint64 appid = 1;

 oneof destination
 {
 uint32 maddr = 2;
 uint64 nxuid = 3;
 }

 uint32 priority = 4;
 uint64 reverse_datagram_id = 5;
 DatagramPayload payload = 6;
}

The client passes a SendRequest message when invoking the Send method. The SendRequest message describes a forward
datagram and includes the following fields:

• appid
This field contains the client’s appid (2.1).

• destination
This field specifies the destination, a node (nxuid) or group (maddr) of the datagram. Note that the client may not
send a datagram to an EXTERNAL group.

• priority
This field specifies the client-side scheduling priority of the datagram, with 0 being the lowest priority and 15 being
the highest priority.

• reverse_datagram_id
If non-zero, this field indicates that the datagram is a forward response datagram, identifying the reverse datagram
to which it is responding.

• payload
This field contains the datagram payload. The normal field contains data, a sequence of bytes, along with an
encrypted flag specifying native encryption (true) or plaintext (false). The short field specifies a bit field.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

14

3.1.4 SendResponse

message SendResponse {
 uint64 forward_datagram_id = 1;
 uint64 estimated_delivery_timestamp = 2;
 Capacity capacity = 3;
}

Upon successful completion, the Send method responds with a SendResponse message, which includes the following fields:

• forward_datagram_id
This field specifies the system-assigned ID of the datagram.

• estimated_delivery_timestamp
This field specifies when the node is expected to receive the datagram, using the timestamp format described in
section 2.7.

• capacity
If present, this field describes the current capacity of the destination node or group after accounting for the
present datagram.

3.2 Resend
 rpc Resend (ResendRequest) returns (ResendResponse) {}

The Resend method resends a forward datagram to a group. The client passes a ResendRequest message to the method,
and the method returns a ResendResponse message to the client. After a successful Resend method call, the client can use
Receive to track the datagram’s progress, or the Error! Not a valid bookmark self-reference. method to delete it from the
queue.

3.2.1 ResendRequest

message ResendRequest {
 uint64 appid = 1;
 uint64 forward_datagram_id = 2;
 repeated uint64 nxuid_list = 3;
}

The client passes a ResendRequest message when invoking the Resend method. The ResendRequest message includes the
following fields:

• appid
This field contains the client’s appid (2.1).

• forward_datagram_id
This field identifies the datagram to be resent, which must be a datagram previously sent to a group address.

• nxuid_list
This field identifies nodes which should be covered by the retransmission of the datagram. If this list is empty, then
the datagram is retransmitted in all sectors connected to member nodes. If this list contains entries, then the
datagram is only retransmitted in sectors connected to nodes in the list.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

15

3.2.2 ResendResponse

message ResendResponse {
 uint64 estimated_delivery_timestamp = 1;
 Capacity capacity = 2;
}

Upon successful completion, the Resend method responds with a ResendResponse message, which includes the following
fields:

• estimated_delivery_timestamp
This field specifies when the node is expected to receive the datagram, using the timestamp format described in
section 2.7.

• capacity
If present, this field describes the current capacity of the destination node or group after accounting for the
present datagram.

3.3 Cancel
 rpc Cancel (CancelRequest) returns (CancelResponse) {}

The Cancel method cancels a forward datagram sent previously using the Send method. The client passes a CancelRequest
message to the method, and the method returns a CancelResponse message to the client.

3.3.1 CancelRequest

message CancelRequest {
 uint64 appid = 1;
 uint64 forward_datagram_id = 2;
}

The client passes a CancelRequest message when invoking the Cancel method. The CancelRequest message identifies the
client (appid) as well as the forward datagram to cancel (forward_datagram_id).

3.3.2 CancelResponse

message CancelResponse {
}

Upon successful completion, the Cancel method responds with a CancelResponse message, which contains no additional
information.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

16

3.4 Receive
 rpc Receive (ReceiveRequest) returns (stream ReceiveResponse) {}

The Receive method waits for reverse datagrams and forward datagram progress notifications. The client passes a
ReceieRequest message to the method, and the method returns a stream of ReceieResponse messages to the client.

3.4.1 ReceiveRequest

message ReceiveRequest {
 uint64 appid = 1;
 uint64 last_sequence_number = 2;
 uint32 duration_ms = 3;
}

The client passes a ReceiveRequest message when invoking the Receive method. The ReceiveRequest message includes
the following fields:

• appid
This field contains the application ID (2.1) of the client.

• last_sequence_number
This field specifies the sequence number of the last event received by the client in earlier calls. This field servers as
a reverse acknowledgement for the response stream. The server will release resources tied to events with serial
numbers up to and including last_sequence_number, and the ReceiveResponse events field will begin with the
first available sequence number after this value.

• duration_ms
This field specifies the amount of time to keep the return stream active. Once this number of milliseconds has
elapsed, the server ends the return stream and the client must issue another method call.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

17

3.4.2 ReceiveResponse

message ReceiveResponse {
 message Event {
 message ReverseDatagram {
 uint64 reverse_datagram_id = 1;
 uint64 forward_datagram_id = 2;
 uint64 nxuid = 3;
 uint32 rdsn = 4;
 uint64 node_timestamp = 5;
 bool encrypted = 6;
 DatagramPayload payload = 7;
 }

 message ForwardDatagramProgress {
 uint64 forward_datagram_id = 1;
 uint32 node_timestamp = 2;
 uint32 fdsn = 3;
 bool final = 4;
 ForwardDatagramProgress progress = 5;
 }

 uint64 timestamp = 1;

 oneof event {
 ReverseDatagram reverse_datagram = 2;
 ForwardDatagramProgress forward_datagram_progress = 3;
 }
 }

 uint64 first_sequence_number = 1;
 repeated Event event_list = 2;
}

Upon successful completion, the Receive method responds with a ReceiveResponse message, which contains two fields,
first_sequence_number and event_list. The first_sequence_number field contains the sequence number of the first and
oldest item in the event_list field, with subsequent items numbered in ascending order. The eventList field contains a series
of events.

Each event in the event_list field contains a timestamp field (2.1), a GPS timestamp of the event at the server, plus one of
two possible event fields: reverse_datagram or forward_datagram_progress. The method will return after a limited period
of time (duration_ms, 3.4.1), requiring the client to call the method at regular intervals to receive a continuous flow of
events.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

18

3.4.2.1 reverse_datagram

If present, the reverse_datagram field informs the client that a reverse datagram has been received from a node. This field
contains a nested ReverseDatagram message, which includes the following fields:

• reverse_datagram_id
This field contains the server-assigned ID of the reverse datagram.

• forward_datagram_id
If non-zero, this field indicates that the datagram is a reverse response datagram, and it identifies the forward
datagram to which it is responding.

• nxuid
This field identifies the node transmitting the datagram.

• rdsn
This field specifies the reverse datagram number assigned to the datagram.

• node_timestamp
If non-zero, this field specifies when the datagram was created at the node (2.7).

• payload
This field contains the datagram payload.

3.4.2.2 forward_progress

If present, the forward_progress field informs the client that progress has been made transmitting a forward datagram to a
node or group. This field contains a nested ForwardProgress message, which includes the following fields:

• forward_datagram_id
This field contains the ID of the forward datagram, assigned by the Send method and returned by the SendRequest
message.

• node_timestamp
If non-zero, this field contains the timestamp of the event (2.7) as measured at the node.

• fdsn
If set to 0x40, this value indicates the system has not yet assigned an fdsn value;. otherwise, this field contains the
fdsn of the datagram.

• final
This field indicates whether the event is the final progress event for the datagram. If true, then the system will not
send additional progress events regarding the datagram.

• progress
This field indicates the type of progress (2.6).

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

19

3.5 ReadNodeList
 rpc ReadNodeList (ReadNodeListRequest) returns (stream ReadNodeListResponse) {}

The ReadNodeList method returns a list of node UIDs. The client passes a ReadNodeListRequest message to the method,
and the method returns a stream of ReadNodeListResponse messages to the client.

3.5.1 ReadNodeListRequest

message ReadNodeListRequest {
 uint64 appid = 1;
 uint64 nxuid_low = 2;
 uint64 nxuid_high = 3;
 uint32 maddr = 4;
}

The client passes a ReadNodeListRequest message when invoking the ReadNodeList method. The ReadNodeListRequest
message includes an appid value identifying the client, as well as three other fields specifying the range of nodes to return,
nxuid_low, nxuid_high, and maddr. The ReadNodeList method will return a list of nodes that meets the following criteria:

• nxuid ≥ nxuid_low, and

• nxuid ≤ nxuid_high, and

• if maddr ≠ 0, then the node is a member of the group

3.5.2 ReadNodeListResponse

message ReadNodeListResponse {
 repeated uint64 nxuid_list = 1;
}

Upon successful completion, the ReceiveNodeList method responds with a stream of ReceiveNodeListResponse messages,
each containing one or more node nxuids in the field nxuid_list. Upon successful completion, the server returns a complete
set of nxuids prior to ending the stream.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

20

3.6 ReadNode
 rpc ReadNode (ReadNodeRequest) returns (stream ReadNodeResponse) {}

The ReadNode method reads information from one or more node records. The client passes a ReadNodeRequest message
to the method, and the method returns a stream of ReadNodeResponse messages to the client.

3.6.1 ReadNodeRequest

message ReadNodeRequest {
 uint64 appid = 1;
 repeated uint64 nxuid_list = 2;
}

The client passes a ReadNodeRequest message when invoking the ReadNode method. The ReadNodeRequest message
includes an appid value identifying the client, and a nxuid_list field containing a list of nxuids specifying node rows to read.

3.6.2 ReadNodeResponse

message ReadNodeResponse {
 message Row {
 message Data {
 message Connection {
 enum State {
 DISCONNECTED = 0;
 CONNECTED = 1;
 LOST = 2;
 }

 State state = 1;
 uint32 sysid = 2;
 uint32 secid = 3;
 double latitude = 4;
 double longitude = 5;
 int32 timezone = 6;
 uint32 naddr = 7;
 uint32 na = 8;
 bool ne = 9;
 bool me = 10;
 }

 message Group {
 uint32 maddr = 1;
 MembershipState state = 2;
 }

 enum ConfigurationState {
 CURRENT = 0;
 SENDING = 1;
 WAITING = 2;
 }

 uint64 nxuid = 1;
 uint64 row_version = 2;
 repeated Group groups = 3;
 uint32 na = 4;
 bool ne = 5;
 bool me = 6;
 Connection connection = 7;
 ConfigurationState configuration_state = 8;
 Capacity capacity = 9;
 uint32 estimated_delivery_timestamp = 10;
 repeated uint64 datagram_queue = 11;
 }

 message Null {

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

21

 uint64 nxuid = 1;
 }

 oneof contents {
 Data data = 2;
 Null null = 3;
 }
 }

 repeated Row row_list = 1;
}

Upon successful completion, the ReceiveNode method responds with a stream of ReceiveNodeLResponse messages, each
of which includes one repeated field row_list. Each element of rows_list corresponds to a nxuid value in the
ReadNodeRequest message, and includes either a data message, containing row data, or a null message, including only the
nxuid value and indicates the node was not found. Where present, the data field includes the following fields:

• nxuid
This field identifies the node.

• row_version
This field contains the current version number of the node’s underlying database row.

• groups
This field contains the list of groups programmed into the node transceiver. Each item in this list includes the field
maddr, identifying the group, and state, describing the synchronization state.

• na
This field specifies the current availability of the node.

• ne
This fields indicates whether the node’s address is enabled. If true, the node will decode forward datagrams and
may send reverse datagrams; if false, the node may not send or receive datagrams.

• me
This fields indicates whether the node’s multicast addresses are enabled. If true, and the node is configured with
multicast addresses, the node will decode multicast frames as well as datagrams addressed to its multicast
addresses. If this value is false, the node will sleep through multicast frames and ignore multicast datagrams.

• connection
This field describes the network-side connection state of the node. If the state is DISCONNECTED, then the node is
disconnected. If the state is CONNECTED or LOST then the connection state is described by the remaining fields of
the Connection message as follows:

• sysid, secid
These fields specify the node’s current system and sector.

• latitude, longitude
These fields specify the latitude and longitude of the centroid of the currently connected sector (in radians).

• timezone
This field specifies the timezone of the currently connected sector (in minutes of offset from UTC).

• naddr
This field specifies the currently assigned node address.

• na
This field specifies the current availability of the node. This field may occasionally vary from the same field in
the node row because of over-the-air synchronization lag.

• ne

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

22

This fields indicates whether the node’s address is enabled. If true, the node will decode forward datagrams
and may send reverse datagrams; if false, the node may not send or receive datagrams. This field may
occasionally vary from the same field in the node row because of over-the-air synchronization lag.

• me
This fields indicates whether the node’s multicast addresses are enabled. If true, and the node is configured
with multicast addresses, the node will decode multicast frames as well as datagrams addressed to its
multicast addresses. If this value is false, the node will sleep through multicast frames and ignore multicast
datagrams. This field may occasionally vary from the same field in the node row because of over-the-air
synchronization lag.

• configuration_state
This field describes the configuration state of the node, either CURRENT, SENDING, or WAITING.

• capacity
This field describes the current state of the node’s capacity.

• estimated_delivery_timestamp
This field specifies when the node would be expected to receive the next datagram, using the timestamp format
described in section 2.7.

• datagram_queue
This field lists the forward datagrams in queue for the node. The list includes the datagram number portion of the
forward datagram ID (2.1) of each datagram, starting with the first datagram in queue and ending with the last
datagram in queue.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

23

3.7 UpdateNode
 rpc UpdateNode (UpdateNodeRequest) returns (UpdateNodeResponse) {}

The UpdateNode method updates a node row at the system. The client passes an UpdateNodeRequest message to the
method, and the method returns an UpdateNodeResponse message to the client. Note that this method may result in
over-the-air programming activity to synchronize the node.

3.7.1 UpdateNodeRequest

message UpdateNodeRequest {
 uint64 appid = 1;
 uint64 nxuid = 2;
 uint64 row_version = 3;
 repeated uint32 maddr_list = 4;
 uint32 na = 5;
 bool me = 6;
 bool ne = 7;
}

The client passes a UpdateNodeRequest message when invoking the UpdateNode method. The UpdateNodeRequest
message includes the following fields:

• appid
This field contains the application ID (2.1) of the client.

• nxuid
This field contains the node UID of the row to be updated.

• row_version
The UpdateNode method employs optimistic row locking, and the row_version field must match the current
version of the node row for the method to complete successfully. If node_version does not match the current row
version, the method will fail with a result code of GRPC_STATUS_ABORTED. If the method is successful, the
record’s new version field will be incremented by 1.

• maddr_list
This field contains the list of multicast addresses programmed into the node transceiver, each representing one
group.

• na
This field specifies the current availability of the node.

• ne
This fields indicates whether the node’s address is enabled. If true, the node will decode forward datagrams and
may send reverse datagrams; if false, the node may not send or receive datagrams.

• me
This fields indicates whether the node’s multicast addresses are enabled. If true, and the node is configured with
multicast addresses, the node will decode multicast frames as well as datagrams addressed to its multicast
addresses. If this value is false, the node will sleep through multicast frames and ignore multicast datagrams.

3.7.2 UpdateNodeResponse

message UpdateNodeResponse {
 uint64 row_version = 1;
}

Upon successful completion, the UpdateNode method responds with an UpdateNodeResponse message, which contains
the new row_version value after the update is complete.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

24

3.8 ReadGroupList

The ReadGroupList method returns a list of groups ID’s. The client passes a ReadGroupListRequest message to the method,
and the method returns a stream of ReadGroupListResponse messages to the client.

3.8.1 ReadGroupListRequest

message ReadGroupListRequest {
 uint64 appid = 1;
 uint32 maddr_low = 2;
 uint32 maddr_high = 3;
 uint64 nxuid = 4;
}

The client passes a ReadGroupListRequest message when invoking the ReadGroupList method. The ReadGroupListRequest
message includes an appid value identifying the client, as well as three other fields specifying the range of groups to return,
maddr_low, maddr_high, and nxuid. The ReadGroupList method will return a list of groups that meet the following
criteria:

• maddr ≥ maddr_low, and

• maddr ≤ maddr_high, and

• if nxuid ≠ 0, then the group includes nxuid in its membership.

3.8.2 ReadGroupListResponse

message ReadGroupListResponse {
 repeated uint32 maddr_list = 1;
}

The ReadGroupList method returns a stream of ReadGroupListResponse messages. Each message includes one field,
maddr_list, containing a list of multicast group addresses. Upon successful completion, the server returns a complete set of
such group addresses prior to ending the stream.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

25

3.9 ReadGroup
 rpc ReadGroup (ReadGroupRequest) returns (stream ReadGroupResponse) {}

The ReadGroup method returns information from a system group record. The client passes a ReadGroupRequest message
to the method, and the method returns a stream of ReadGroupResponse messages to the client.

3.9.1 ReadGroupRequest

message ReadGroupRequest {
 uint64 appid = 1;
 repeated uint32 maddr_list = 2;
}

The client passes a ReadGroupRequest message when invoking the ReadGroup method. The ReadGroupRequest message
includes an appid value identifying the client, and a maddr_list field containing a list of multicast addresses, specifying the
group rows to read.

3.9.2 ReadGroupResponse

message ReadGroupResponse {
 message Row {
 message Data {
 enum Visibility {
 PRIVATE = 0;
 PUBLIC = 1;
 EXTERNAL = 2;
 }

 uint32 maddr = 1;
 uint64 row_version = 2;
 string label = 3;
 uint32 ga = 4;
 Visibility visibility = 5;
 uint32 sysid = 6;
 Capacity capacity = 7;
 repeated uint64 datagram_queue = 8;
 }

 message Null
 {
 uint32 maddr = 1;
 }

 oneof contents {
 Data data = 2;
 Null null = 3;
 }
 }

 repeated Row row_list = 1;
}

Upon successful completion, the ReceiveGroup method responds with a stream of ReceiveGroupResponse messages, each
of which includes one repeated field row_list. Each element of row_list corresponds to a maddr_list value in the
ReadNodeRequest message, and includes either a data message, containing row data, or a null message, including only the
maddr value and indicates the node was not found. Where present, the data field includes the following fields:

• maddr
This field contains the multicast address of the group.

• row_version
This field contains the current version number of the group’s underlying database row.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

26

• label
This field contains a symbolic label of the group.

• ga
This field contains the group available value, describing how quickly group messages are received by nodes in the
group.

• visibility
This field identifies the visibility of the group from an API perspective. PRIVATE means that the group belongs to
the calling client and is not visible to other clients. PUBLIC means that the group belongs to the calling client but is
visible to other clients, who may add their own nodes to it. EXTERNAL means that the group belongs to another
client but is visible to the calling client.

• sysid
This field identifies the system scope of the group. A value of zero means that the group address is globally
coordinated may receive messages on any system. A non-zero value identifies the system ID where the group may
receive messages.

• capacity
If present, this field describes the current state of the group’s quota.

• datagram_queue
This field lists the forward datagrams in queue for the group. The list includes the datagram number portion of the
forward datagram ID (2.1) of each datagram, starting with the first datagram in queue and ending with the last. For
groups with visibility set to EXTERNAL, this value is always empty.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

27

3.10 ReadMembership
rpc ReadMembership (ReadMembershipRequest) returns (stream ReadMembershipResponse) {}

The ReadMembership method reads a group’s membership, or the list of nodes programmed with the group specified
group address. The client passes an ReadMembershipRequest message to the method, and the method returns a
ReadMembershipResponse message to the client.

3.10.1 ReadMembershipRequest

message ReadMembershipRequest
{
 uint64 appid = 1;
 uint32 maddr = 2;
}

The client passes a ReadMembershipRequest message when invoking the ReadMembership method. The
ReadMembershipRequest includes an appid value identifying the client, and maddr field specifying the multicast address
of the group to read.

3.10.2 ReadMembershipResponse

message ReadMembershipResponse
{
 message Member {
 uint64 nxuid = 1;
 MembershipState state = 2;
 }

 repeated Member member_list = 1;
}

Upon successful completion, the ReadMembership method responds with an ReadMembershipResponse message, which
contains the field membership, which contains the list of nodes belonging to the group.

3.11 UpdateMembership
 rpc UpdateMembership (UpdateMembershipRequest) returns (UpdateMembershipResponse) {}

The UpdateMembership method adds nodes to a group, and/or removes nodes from a group. The client passes an
UpdateMembershipRequest to the method, and the method returns an UpdateMembershipResponse message to the
client. Note that this method may result in over-the-air programming activity to synchronize the affected nodes.

3.11.1 UpdateMembershipRequest

message UpdateMembershipRequest
{
 message Operation1 {
 bool remove_all_nodes = 2;
 repeated uint64 add_nodes = 3;
 }

 message Operation2 {
 repeated uint64 remove_nodes = 3;
 repeated uint64 add_nodes = 4;
 }

 uint64 appid = 1;

 uint32 maddr = 2;

 oneof operation {

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

28

 Operation1 operation1 = 3;
 Operation2 operation2 = 4;
 }
}

The client passes an UpdateMembershipRequest message when invoking the UpdateMembership method. The
UpdateMembershipRequest method includes a maddr, specifying the multicast address of the group to modify, followed
by an operation to remove and add nodes. Two operations are possible. The first operation (operation1) optionally
removes all nodes from the group (remove_all_nodes) and then adds a list of nodes (add_nodes). The second operation
(operation2) removes a list of nodes (remove_nodes) and then adds a list of nodes (add_nodes).

When nodes are added to a group using this method, the group address is added to the node row as the last value in the
groups field (3.6.1 and 3.6.2). Changes happen instantaneously to the system database but require time to replicate over
the air to the nodes themselves.

3.11.2 UpdateMembershipResponse

message UpdateMembershipResponse
{
 message Exception {
 enum Code
 {
 NotFound = 0;
 Overflow = 1;
 }

 uint64 nxuid = 1;
 Code code = 2;
 }

 repeated Exception exceptions = 1;
}

Upon successful completion, the UpdateMembership method responds with an UpdateMembershipResponse message.
The UpdateMembershipResponse message includes a list of exceptions, identifying nodes which could not be added to the
group. Each Excption message includes a nxuid as well as code enumeration. The NotFound code means that the node
does not exist, and the Overflow code means that the node is already a member of 16 groups. Under normal
circumstances, where each node is successfully added to the group, the exceptions field is empty.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

29

3.12 Follow
 rpc GetSystemInfo (GetSystemInfoRequest) returns (GetSystemInfoResponse) {}

The Follow method returns a stream of events from the server. These events include datagram traffic activity as well as
changes to node, group, and membership rows. In architectures where the application server (client) maintains its own
database, this method enables the client to synchronize the relevant tables of its database to those of the server. The client
passes a FollowRequest message to the method, and the method returns a stream of FollowResponse messages to the
client.

3.12.1 FollowRequest

message FollowRequest {
 uint64 appid = 1;
 uint64 last_sequence_number = 2;
 uint32 duration_ms = 3;
 bool purge = 4;
}

The client passes an FollowRequest message when invoking the Follow method. The FollowRequest message includes the
following fields:

• appid
This field contains the application ID (2.1) of the client.

• last_sequence_number
This field specifies the sequence number of the last event received by the client in earlier calls. This field servers as
a reverse acknowledgement for the response stream. The server will release resources tied to events with serial
numbers up to and including last_sequence_number, and the FollowResponse events field will begin with the first
available sequence number after this value.

• duration_ms
This field specifies the amount of time to keep the return stream active. Once this number of milliseconds has
elapsed, the server ends the return stream and the client must issue another method call.

• purge
This field tells the server to purge the monitor event cache prior to starting the response stream. The first event
returned in the response stream will be the purge event.

3.12.2 FollowResponse

message FollowResponse {
 message Event {
 message ForwardDatagram {
 uint64 forward_datagram_id = 1;

 oneof destination
 {
 uint32 maddr = 2;
 uint64 nxuid = 3;
 }

 uint64 reverse_datagram_id = 4;
 uint64 expected_delivery = 5;
 uint32 priority = 6;
 DatagramPayload payload = 7;
 }

 message ForwardDatagramProgress {
 uint64 forward_datagram_id = 1;
 uint64 forward_datagram_client_id = 2;
 uint32 node_timestamp = 3;

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

30

 uint32 fdsn = 4;
 bool final = 5;
 ForwardDatagramProgress progress = 6;
 }

 message ReverseDatagram {
 uint64 reverse_datagram_id = 1;
 uint64 forward_datagram_id = 2;
 uint64 nxuid = 3;
 uint32 rdsn = 4;
 uint64 node_timestamp = 5;
 bool encrypted = 6;
 DatagramPayload payload = 7;
 }

 message MembershipChange {
 uint32 maddr = 1;
 uint64 nxuid = 2;
 MembershipState state = 3;
 }

 uint64 timestamp = 1;

 oneof event {
 ForwardDatagram forward_datagram = 2;
 ForwardDatagramProgress forward_datagram_progress = 3;
 ReverseDatagram reverse_datagram = 4;
 uint64 node_update = 5;
 uint64 node_add = 6;
 uint64 node_delete = 7;
 uint32 group_update = 8;
 uint32 group_add = 9;
 uint32 group_delete = 10;
 MembershipChange membership_change = 11;
 uint32 overrun = 12;
 uint32 purge = 13;
 }
 }

 uint64 first_sequence_number = 1;
 repeated Event event_list = 2;
}

Upon successful completion, the Receive method responds with a ReceiveResponse message, which contains two fields,
first_sequence_number and event_list. The first_sequence_number field contains the sequence number of the first and
oldest item in the event_list field, with subsequent items numbered in ascending order. The event_list field contains an
series of events.

Each Event message in the event_list field includes a timestamp field (2.1), marking the time when the event was observed
at the server, plus one of twelve possible event types in the event field: forward_datagram, forward_datagram_progress,
reverse_datagram, node_update, node_add, node_delete, group_update, group_add, group_delete,
membership_change, overrun, or purge.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

31

3.12.2.1 forward_datagram

This event signals that a forward datagram has been received by an API client. The field contains a ForwardDatagram
message, which includes the following fields:

• forward_datagram_id
This field contains the ID of the forward datagram, assigned by the Send method and returned by the SendRequest
message.

• destination
This field specifies the destination, a node (nxuid) or group (maddr) of the datagram. Note that the client may not
send a datagram to an EXTERNAL group.

• reverse_datagram_id
If present, this field indicates the datagram is a forward response datagram, and contains the ID of the reverse
datagram being replied to. If absent, the forward datagram is an unsolicited request.

• priority
This field contains the server assigned absolute priority of the datagram, which is formed from the priority
specified in the Send method call, as well as other priority factors managed by the server.

• payload
This field contains the datagram payload.

3.12.2.2 forward_datagram_progress

This event signals that a forward datagram has progressed toward deliver to its destination node or group. This field
contains a ForwardDatagramProgress message, which includes the following fields:

• forward_datagram_id
This field contains the ID of the forward datagram, assigned by the Send method and returned by the SendRequest
message.

• node_timestamp
If non-zero, this field contains the timestamp of the event (2.7) as measured at the node.

• fdsn
If set to 0x40, this value indicates the system has not yet assigned an fdsn; otherwise, this field contains the fdsn of
the datagram.

• final
This field indicates whether the event is the final progress event for the datagram. If true, then the system will not
send additional progress events regarding the datagram unless the client successfully invokes a Resend method on
the datagram.

• progress
This field indicates the type of progress (2.6).

3.12.2.3 reverse_datagram

This event signals that the system received a reverse datagram. The field contains a ReverseDatagram message, which
includes the following fields.

• reverse_datagram_id
This field contains the server-assigned ID of the reverse datagram.

• forward_datagram_id
If non-zero, this field indicates that the datagram is a reverse response datagram, and it identifies the forward
datagram to which it is responding.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

32

• nxuid
This field identifies the node transmitting the datagram.

• rdsn
This field specifies the reverse datagram number assigned to the datagram.

• node_timestamp
If non-zero, this field specifies when the datagram was created at the node (2.7).

• payload
This field contains the datagram payload.

3.12.2.4 node_update

This event signals that a node row has been updated. The value contains the node’s nxuid,

3.12.2.5 node_add

This type of event signals that a node row has been added. The value contains the node’s nxuid,

3.12.2.6 node_delete

This type of event signals that a node row has been deleted The value contains the node’s nxuid,

3.12.2.7 group_update

This event signals that a group row has been updated. The value contains the group’s multicast address (maddr).

3.12.2.8 group_add

This event signals that a group row has been added. The value contains the group’s multicast address (maddr).

3.12.2.9 group_delete

This event signals that a group row has been deleted. The value contains the group’s multicast address (maddr).

3.12.2.10 membership_change

This event signals that the group membership has changed. The field contains a MembershipChange message, which
includes the following fields.

• maddr
This field identifies the group’s multicast address.

• nxuid
This field identifies the member node.

• state
The state of the membership.

3.12.2.11 Overrun

This event signals that the event queue has been overrun and that a discontinuity may appear in the event sequence
numbers. The value contains the number of events that were lost.

3.12.2.12 Purge

This event signals that the event queue has been purged and that a discontinuity may appear in the event sequence
numbers. The value contains the number of events that were purged.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

33

3.13 GetSystemInfo
 rpc GetSystemInfo (GetSystemInfoRequest) returns (GetSystemInfoResponse) {}

The GetSystemInfo method returns information regarding the system and the client’s connection to the system. The client
passes a GetSystemInfoRequest message to the method, and the method returns a GetSystemInfoResponse message to
the client.

3.13.1 GetSystemInfoRequest

message GetSystemInfoRequest {
 uint64 appid = 1;
}

The client passes an FollowRequest message when invoking the Follow method. The FollowRequest message includes an
appid field, identifying the client.

3.13.2 GetSystemInfoResponse

message GetSystemInfoResponse {
 message FifoState {
 uint32 depth = 1;
 uint64 newest_sequence_number = 2;
 }

 message SystemInfo {
 enum State {
 NORMAL_OPERATIONS = 0;
 MINOR_ALARM = 1;
 MAJOR_ALARM = 2;
 OFF_LINE = 3;
 }

 uint32 sysid = 1;
 State state = 2;
 string name = 3;
 string location = 4;
 string contact_info = 5;
 }

 SystemInfo system_info = 2;
 FifoState receive_fifo_state = 3;
 FifoState follow_fifo_state = 4;
 uint64 current_time_gps = 5;
 uint64 current_time_utc = 6;
}

Upon successful completion, the GetSystemInfo method responds with a GetSystemInfoResponse message, which contains
the following fields:

• system_info
This field contains the current information about the system, including the following subfields:

• sysid
This field contains the server’s iocast system identifier

• state
This field reflects the overall condition of the system. The NORMAL_OPERATIONS state indicates that the
system is operating normally. The MINOR_ALARM state indicates that trouble exists, but the system is
operating and the client’s API operations are unaffected. The MAJOR_ALARM state indicates that system
trouble may delay or interfere with client’s API operations, and OFF_LINE indicates that the system is not
presently operational.

API
Version 3.2

Copyright © 2021, Critical Response Systems, Inc. All Rights Reserved.
Specifications subject to change without notice.

34

• name
This field contains the descriptive name of the system.

• location
This field contains a description of the system’s physical location.

• contact_info
This field contains contact information (phone or email) for the system administrator.

• receive_fifo_state
This field specifies the number of events currently in the client’s receive queue, along with the newest sequence
number.

• follow_fifo_state
This field specifies the number of events currently in the client’s follow queue, along with the newest sequence
number.3339

• current_time_gps
This field contains the current GPS time, measured by the server at the start of the method call, reported as per
section 2.7.

• current_time_utc
This field contains the current UTC time, measured by the server at the start of the method call, reported as per
section 2.7.

	1 Iocast Overiew
	1.1 Benefits
	1.2 Components
	1.2.1 System
	1.2.1.1 Control Stack
	1.2.1.2 Base Transceiver (BX)

	1.2.2 Node
	1.2.2.1 Node Transceiver (NX)
	1.2.2.2 Node Controller (NC)
	1.2.2.3 Node Transceiver Interface (NXI)

	1.2.3 Application Server
	1.2.4 Group
	1.2.5 Channel
	1.2.6 Sector
	1.2.7 Datagram
	1.2.7.1 Requests and Responses
	1.2.7.2 Encryption
	1.2.7.3 Timestamps
	1.2.7.4 Short Datagrams
	1.2.7.5 Datagram Identifiers

	1.2.8 Number Coordination

	2 API Description
	2.1 Clients
	2.2 Nodes
	2.3 Groups
	2.4 Datagrams
	2.5 Datagram Payload
	2.6 Datagram Progress
	2.7 Timestamps
	2.8 Capacity
	2.9 gRPC Status Codes
	2.10 API Method Summary
	2.10.1 Communication Methods
	2.10.2 Management Methods
	2.10.3 System Information Method

	3 API Methods
	3.1 Send
	3.1.1 ResendRequest
	3.1.2 ResendResponse
	3.1.3 SendRequest
	3.1.4 SendResponse

	3.2 Resend
	3.2.1 ResendRequest
	3.2.2 ResendResponse

	3.3 Cancel
	3.3.1 CancelRequest
	3.3.2 CancelResponse

	3.4 Receive
	3.4.1 ReceiveRequest
	3.4.2 ReceiveResponse
	3.4.2.1 reverse_datagram
	3.4.2.2 forward_progress

	3.5 ReadNodeList
	3.5.1 ReadNodeListRequest
	3.5.2 ReadNodeListResponse

	3.6 ReadNode
	3.6.1 ReadNodeRequest
	3.6.2 ReadNodeResponse

	3.7 UpdateNode
	3.7.1 UpdateNodeRequest
	3.7.2 UpdateNodeResponse

	3.8 ReadGroupList
	3.8.1 ReadGroupListRequest
	3.8.2 ReadGroupListResponse

	3.9 ReadGroup
	3.9.1 ReadGroupRequest
	3.9.2 ReadGroupResponse

	3.10 ReadMembership
	3.10.1 ReadMembershipRequest
	3.10.2 ReadMembershipResponse

	3.11 UpdateMembership
	3.11.1 UpdateMembershipRequest
	3.11.2 UpdateMembershipResponse

	3.12 Follow
	3.12.1 FollowRequest
	3.12.2 FollowResponse
	3.12.2.1 forward_datagram
	3.12.2.2 forward_datagram_progress
	3.12.2.3 reverse_datagram
	3.12.2.4 node_update
	3.12.2.5 node_add
	3.12.2.6 node_delete
	3.12.2.7 group_update
	3.12.2.8 group_add
	3.12.2.9 group_delete
	3.12.2.10 membership_change
	3.12.2.11 Overrun
	3.12.2.12 Purge

	3.13 GetSystemInfo
	3.13.1 GetSystemInfoRequest
	3.13.2 GetSystemInfoResponse

